1 Numerical sets

Monoid

Let A be a non-empty set and $\bullet: A \times A \rightarrow A$ be a binary operation. The pair (A, \bullet) is said monoid if the following holds:
i) for every $a, b, c \in A$ we have

$$
\begin{equation*}
(a \bullet b) \bullet c=a \bullet(b \bullet c) \quad(\text { associative property }) \tag{1.1}
\end{equation*}
$$

ii) there exists an element $e \in A$ such that $\forall a \in A$ we have

$$
\begin{equation*}
a \bullet e=e \bullet a=a \quad \text { (neutral element) } \tag{1.2}
\end{equation*}
$$

Additionally, if the following holds
iii) $\forall a, b \in A$

$$
\begin{equation*}
a \bullet b=b \bullet a \quad(\text { commutative property }) \tag{1.3}
\end{equation*}
$$

then the pair (A, \bullet) is said to be commutative (or Abelian) monoid.

Example, Natural numbers

Consider the set of natural numbers

$$
\begin{equation*}
\mathbb{N}:=\{0,1,2,3, \ldots\} \tag{1.4}
\end{equation*}
$$

Let $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ and $\cdot: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ the usual sum and multiplication. Then, $(\mathbb{N},+)$ is a monoid with neutral element $e_{+}=0$ and the pair (\mathbb{N}, \cdot) is a monoid with neutral element $e .=1$.

Group

Let A be a non-empty set and $\bullet: A \times A \rightarrow A$ be a binary operation. The pair (A, \bullet) is said group if the following holds:
i) for every $a, b, c \in A$ we have

$$
\begin{equation*}
(a \bullet b) \bullet c=a \bullet(b \bullet c) \quad(\text { associative property }) \tag{1.5}
\end{equation*}
$$

ii) there exists an element $e \in A$ such that $\forall a \in A$ we have

$$
\begin{equation*}
a \bullet e=e \bullet a=a \quad \text { (neutral element) } \tag{1.6}
\end{equation*}
$$

iv) $\forall a \in A$ there exists $a^{-1} \in A$ such that

$$
\begin{equation*}
a \bullet a^{-1}=a^{-1} \bullet a=e \quad(\text { inverse }) \tag{1.7}
\end{equation*}
$$

Additionally, if the following holds
iii) $\forall a, b \in A$

$$
\begin{equation*}
a \bullet b=b \bullet a \quad(\text { commutative property }) \tag{1.8}
\end{equation*}
$$

then the pair (A, \bullet) is said to be commutative (or Abelian) group.

Ring

Let A be a non-empty set and $\bullet: A \times A \rightarrow A$ and $\star: A \times A \rightarrow A$ be two binary operations. The triple (A, \bullet, \star) is said ring if (A, \bullet) is an Abelian group, if (A, \star) is a monoid and if the following holds (distributive property):
v) $\forall a, b, c \in A$ we have

$$
\begin{equation*}
a \star(b \bullet c)=(a \star b) \bullet(a \star c) \quad \text { and } \quad(b \bullet c) \star a=(b \star a) \bullet(c \star a) \tag{1.9}
\end{equation*}
$$

Example, Integer numbers

Consider the set of the integer numbers

$$
\begin{equation*}
\mathbb{Z}:=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} . \tag{1.10}
\end{equation*}
$$

Let $+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ and $\cdot: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ the usual sum and multiplication. Then the triple $(\mathbb{Z},+, \cdot)$ is a ring with neutral element $e_{+}=0$ for the sum and $e=1$ for the product.

Field

Let A be a non-empty set and $\bullet: A \times A \rightarrow A$ and $\star: A \times A \rightarrow A$ be two binary operations. The triple (A, \bullet, \star) is said field if (A, \bullet) is an Abelian group with neutral element $e_{\bullet} \in A$, if $\left(A^{\star}, \star\right)$ is an Abelian group with neutral element $e_{\star} \in A$ and if (1.9) holds for every $a, b, c \in A$ where $A^{\star}:=A \backslash e_{\text {• }}$.

Example, Rational numbers

Consider the set of rationals

$$
\begin{equation*}
\mathbb{Q}:=\left\{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{Z}^{\star}\right\} \tag{1.11}
\end{equation*}
$$

where $\mathbb{Z}^{\star}=\mathbb{Z} \backslash\{0\}$. Let $+: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}, \cdot: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$ the standard sum and product. Then, the triple $(\mathbb{Q},+, \cdot)$ is a field with neutral element $e_{+}=0$ for the sum and $e .=1$ for the product. Observe $\mathbb{Q}^{\star}=\mathbb{Q} \backslash\{0\}$.

Real numbers

The system of real numbers is the quadruple $(\mathbb{R},+, \cdot, \leq)$ where

1. $(\mathbb{R},+, \cdot)$ is a field;
2. (\mathbb{R}, \leq) is a totally ordered set;
3. every set $\varnothing \neq I \subseteq \mathbb{R}$ bounded from above admits supremum ($\sup I$) (analogously, every set $\emptyset \neq I \subseteq \mathbb{R}$ bounded from below admits infimum $(\inf I)$.
