1 Numerical sets

Monoid

Let A be a non-empty set and $\bullet : A \times A \to A$ be a binary operation. The pair (A, \bullet) is said *monoid* if the following holds:

i) for every $a, b, c \in A$ we have

$$(a \bullet b) \bullet c = a \bullet (b \bullet c)$$
 (associative property) (1.1)

ii) there exists an element $e \in A$ such that $\forall a \in A$ we have

$$a \bullet e = e \bullet a = a$$
 (neutral element) (1.2)

Additionally, if the following holds

iii) $\forall a, b \in A$

$$a \bullet b = b \bullet a$$
 (commutative property) (1.3)

then the pair (A, \bullet) is said to be commutative (or Abelian) monoid.

Example, Natural numbers

Consider the set of natural numbers

$$\mathbb{N} := \{0, 1, 2, 3, \dots\}$$
(1.4)

Let $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and $\cdot: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ the usual sum and multiplication. Then, $(\mathbb{N}, +)$ is a monoid with neutral element $e_+ = 0$ and the pair (\mathbb{N}, \cdot) is a monoid with neutral element $e_- = 1$.

Group

Let A be a non-empty set and $\bullet : A \times A \to A$ be a binary operation. The pair (A, \bullet) is said group if the following holds:

i) for every $a, b, c \in A$ we have

$$(a \bullet b) \bullet c = a \bullet (b \bullet c)$$
 (associative property) (1.5)

ii) there exists an element $e \in A$ such that $\forall a \in A$ we have

$$a \bullet e = e \bullet a = a$$
 (neutral element) (1.6)

iv) $\forall a \in A$ there exists $a^{-1} \in A$ such that

$$a \bullet a^{-1} = a^{-1} \bullet a = e \qquad (inverse) \tag{1.7}$$

Additionally, if the following holds

iii) $\forall a, b \in A$

$$a \bullet b = b \bullet a$$
 (commutative property) (1.8)

then the pair (A, \bullet) is said to be commutative (or Abelian) group.

Ring

Let A be a non-empty set and $\bullet: A \times A \to A$ and $\star: A \times A \to A$ be two binary operations. The triple (A, \bullet, \star) is said ring if (A, \bullet) is an Abelian group, if (A, \star) is a monoid and if the following holds (distributive property):

v) $\forall a, b, c \in A$ we have

 $a \star (b \bullet c) = (a \star b) \bullet (a \star c) \qquad and \qquad (b \bullet c) \star a = (b \star a) \bullet (c \star a)$ (1.9)

Example, Integer numbers

Consider the set of the integer numbers

$$\mathbb{Z} := \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}.$$
(1.10)

Let $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ and $\cdot: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ the usual sum and multiplication. Then the triple $(\mathbb{Z}, +, \cdot)$ is a ring with neutral element $e_+ = 0$ for the sum and $e_- = 1$ for the product.

Field

Let A be a non-empty set and $\bullet: A \times A \to A$ and $\star: A \times A \to A$ be two binary operations. The triple (A, \bullet, \star) is said *field* if (A, \bullet) is an Abelian group with neutral element $e_{\bullet} \in A$, if (A^{\star}, \star) is an Abelian group with neutral element $e_{\star} \in A$ and if (1.9) holds for every $a, b, c \in A$ where $A^{\star} := A \setminus e_{\bullet}$.

Example, Rational numbers

Consider the set of rationals

$$\mathbb{Q} := \{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{Z}^{\star} \}$$
(1.11)

where $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$. Let $+ : \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}, :: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ the standard sum and product. Then, the triple $(\mathbb{Q}, +, \cdot)$ is a field with neutral element $e_+ = 0$ for the sum and $e_- = 1$ for the product. Observe $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$.

Real numbers

The system of real numbers is the quadruple $(\mathbb{R}, +, \cdot, \leq)$ where

- 1. $(\mathbb{R}, +, \cdot)$ is a field;
- 2. (\mathbb{R}, \leq) is a totally ordered set;
- 3. every set $\emptyset \neq I \subseteq \mathbb{R}$ bounded from above admits supremum (sup *I*) (analogously, every set $\emptyset \neq I \subseteq \mathbb{R}$ bounded from below admits infimum (inf *I*).