Exercises, September 10, 2021

Basic properties of functions

Exercise 1

Let $\mathbb{R}^+ := \{x \in \mathbb{R}, \text{such that } x \ge 0\}, \mathbb{R}^- := \{x \in \mathbb{R}, \text{such that } x \le 0\}$. Consider the following functions, where $x \to f_1(x) = x^2, x \to f_2(x) = x^3, x \to f_3(x) = x^4$

- a) $(f_1, \mathbb{R}^-, \mathbb{R}^+)$
- b) $(f_2, \mathbb{R}, \mathbb{R})$
- c) $(f_2, \mathbb{R}^+, \mathbb{R}^+)$
- d) $(f_3, \mathbb{R}, \mathbb{R})$
- e) $(f_3, \mathbb{R}, \mathbb{R}^+)$
- f) $(f_3, \mathbb{R}^+, \mathbb{R}^+)$

For each of these functions discuss domain, co-domain, image, surjectivity, injectivity, bijectivity, counterimage and, if possible, find the inverse function.

Exercise 2

Consider the function (f, A, \mathbb{R}) where

$$f(x) := \frac{ax+b}{cx+d}.$$
(1.12)

For $a, b, c, d \in \mathbb{R}$ find the largest domain A where it makes sense to define (f, A, \mathbb{R}) and then discuss for which values of $a, b, c, d \in \mathbb{R}$ the function (f, A, \mathbb{R}) is injective.

Hint. To determine A you have to discuss cx + d = 0 for $c, d \in \mathbb{R}$.

Exercise 3

Consider the sets

$$A := \{ \text{students of Shanghai University} \}$$
(1.13)

and

$$B := \{\text{shoe sizes}\} \tag{1.14}$$

and consider the map f that assigns to each student their own shoe size.

• Is the function (f, A, B) injective? Explain why.

Then, consider the set

$$C := \{\text{Shanghai University students' ID numbers}\}$$
(1.15)

and the function g that associates to each student their own University ID number.

- Is the function (h, A, C) injective? Explain why.
- Is the function (h, A, C) surjective? Explain why.
- Is the function (h, A, C) bijective? Explain why.

Sketch of the solutions

Exercise 1

- a) Injective, surjective, bijective, $f_1^{-1} = -\sqrt{\cdot}$, the counterimage $f_1^{-1}(\mathbb{R}^+) = \mathbb{R}^-$.
- b) Injective, surjective, bijective, $f_2^{-1} = \sqrt[3]{\cdot}$, the counterimage $f_2^{-1}(\mathbb{R}) = \mathbb{R}$.
- c) Injective, surjective, bijective, $f_2^{-1} = \sqrt[3]{\cdot}$, the counterimage $f_2^{-1}(\mathbb{R}^+) = \mathbb{R}^+$.
- d) not injective, not surjective, the counterimage $f_3^{-1}(y) = \{\pm \sqrt[4]{y}\}$ if y > 0, $f_3^{-1}(0) = \{0\}$ and $f_3^{-1}(y) = \emptyset$ if y < 0.
- e) Not injective, surjective, the counterimage $f_3^{-1}(y) = \{\pm \sqrt[4]{y}\}$ if y > 0 and $f_3^{-1}(0) = \{0\}$.
- f) Injective, surjective, bijective, $f_3^{-1} = \sqrt[4]{\cdot}$, the counterimage $f_3^{-1}(\mathbb{R}^+) = \mathbb{R}^+$.

Exercise 2

First, if c = d = 0 the fraction is not defined. We continue assuming $(c, d) \neq (0, 0)$.

Then, suppose $c = 0, d \in \mathbb{R}, d \neq 0$. In this case $A = \mathbb{R}$. In the general case $c \neq 0$ we have $A = \{x \in \mathbb{R} : cx + d \neq 0\}$ and $f : A \to \mathbb{R}$ is injective provided $ad \neq cb$.

Exercise 3

Intuitively, $f: A \to B$ cannot be injective as it is very easy to find counterexamples. $h: A \to C$ is injective, surjective and bijective because each student has their own individual IDs and duplicate IDs are not allowed.