Exercises, September 10, 2021

Basic properties of functions

Exercise 1

Let $\mathbb{R}^{+}:=\{x \in \mathbb{R}$, such that $x \geq 0\}, \mathbb{R}^{-}:=\{x \in \mathbb{R}$, such that $x \leq 0\}$. Consider the following functions, where $x \rightarrow f_{1}(x)=x^{2}, x \rightarrow f_{2}(x)=x^{3}, x \rightarrow f_{3}(x)=x^{4}$
a) $\left(f_{1}, \mathbb{R}^{-}, \mathbb{R}^{+}\right)$
b) $\left(f_{2}, \mathbb{R}, \mathbb{R}\right)$
c) $\left(f_{2}, \mathbb{R}^{+}, \mathbb{R}^{+}\right)$
d) $\left(f_{3}, \mathbb{R}, \mathbb{R}\right)$
e) $\left(f_{3}, \mathbb{R}, \mathbb{R}^{+}\right)$
f) $\left(f_{3}, \mathbb{R}^{+}, \mathbb{R}^{+}\right)$

For each of these functions discuss domain, co-domain, image, surjectivity, injectivity, bijectivity, counterimage and, if possible, find the inverse function.

Exercise 2

Consider the function (f, A, \mathbb{R}) where

$$
\begin{equation*}
f(x):=\frac{a x+b}{c x+d} . \tag{1.12}
\end{equation*}
$$

For $a, b, c, d \in \mathbb{R}$ find the largest domain A where it makes sense to define (f, A, \mathbb{R}) and then discuss for which values of $a, b, c, d \in \mathbb{R}$ the function (f, A, \mathbb{R}) is injective.

Hint. To determine A you have to discuss $c x+d=0$ for $c, d \in \mathbb{R}$.

Exercise 3

Consider the sets

$$
\begin{equation*}
A:=\{\text { students of Shanghai University }\} \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
B:=\{\text { shoe sizes }\} \tag{1.14}
\end{equation*}
$$

and consider the map f that assigns to each student their own shoe size.

- Is the function (f, A, B) injective? Explain why.

Then, consider the set

$$
\begin{equation*}
C:=\{\text { Shanghai University students' ID numbers }\} \tag{1.15}
\end{equation*}
$$

and the function g that associates to each student their own University ID number.

- Is the function (h, A, C) injective? Explain why.
- Is the function (h, A, C) surjective? Explain why.
- Is the function (h, A, C) bijective? Explain why.

Sketch of the solutions

Exercise 1

a) Injective, surjective, bijective, $f_{1}^{-1}=-\sqrt{\cdot}$, the counterimage $f_{1}^{-1}\left(\mathbb{R}^{+}\right)=\mathbb{R}^{-}$.
b) Injective, surjective, bijective, $f_{2}^{-1}=\sqrt[3]{ }$, the counterimage $f_{2}^{-1}(\mathbb{R})=\mathbb{R}$.
c) Injective, surjective, bijective, $f_{2}^{-1}=\sqrt[3]{\cdot}$, the counterimage $f_{2}^{-1}\left(\mathbb{R}^{+}\right)=\mathbb{R}^{+}$.
d) not injective, not surjective, the counterimage $f_{3}^{-1}(y)=\{ \pm \sqrt[4]{y}\}$ if $y>0, f_{3}^{-1}(0)=\{0\}$ and $f_{3}^{-1}(y)=\emptyset$ if $y<0$.
e) Not injective, surjective, the counterimage $f_{3}^{-1}(y)=\{ \pm \sqrt[4]{y}\}$ if $y>0$ and $f_{3}^{-1}(0)=\{0\}$.
f) Injective, surjective, bijective, $f_{3}^{-1}=\sqrt[4]{\cdot}$, the counterimage $f_{3}^{-1}\left(\mathbb{R}^{+}\right)=\mathbb{R}^{+}$.

Exercise 2

First, if $c=d=0$ the fraction is not defined. We continue assuming $(c, d) \neq(0,0)$.
Then, suppose $c=0, d \in \mathbb{R}, d \neq 0$. In this case $A=\mathbb{R}$. In the general case $c \neq 0$ we have $A=\{x \in \mathbb{R}: c x+d \neq 0\}$ and $f: A \rightarrow \mathbb{R}$ is injective provided $a d \neq c b$.

Exercise 3

Intuitively, $f: A \rightarrow B$ cannot be injective as it is very easy to find counterexamples. $h: A \rightarrow C$ is injective, surjective and bijective because each student has their own individual IDs and duplicate IDs are not allowed.

