Exercises, September 13, 2021

Upper and lower bounds

Exercise 1

Let

$$
A=\left\{\frac{m}{n}+\frac{n}{m}: m, n \in \mathbb{N} \backslash\{0\}\right\}
$$

and

$$
B=\left\{(-1)^{n} \frac{n+1}{n}, n \in \mathbb{N} \backslash\{0\}\right\} .
$$

Compute supremum, infimum, maximum and minimum of A and B as subsets of \mathbb{Q}. Let

$$
C=\left\{x^{2} \leq 5 \text { and } x<\pi, x \in \mathbb{R}\right\}
$$

Compute supremum, infimum, maximum and minimum of C as a subset of \mathbb{R}.
Solution. $\min A=2$ and this coincides with the infimum, obviously. A is unbounded above so there is no supremum/maximum (equivalently, $\sup A=+\infty$).
$\min B=-2$ and this coincides with the infimum, obviously. $\max B=-2$ and this coincides with the supremum, obviously.

First of all, we need to identify the set C precisely. According to the definition we have $-\sqrt{5} \leq x \leq \sqrt{5}$ and $x<\pi$ which, together, gives:

$$
C=\{x \in \mathbb{R}:-\sqrt{5} \leq x<\pi\} .
$$

Then, $\min C=-\sqrt{5}$ and this coincides with the infimum, obviously. $\sup C=\pi$ while C has no maximum.

